Modulation of Circadian Glucocorticoid Oscillation via Adrenal Opioid-CXCR7 Signaling Alters Emotional Behavior

نویسندگان

  • Yuichi Ikeda
  • Hidetoshi Kumagai
  • Amber Skach
  • Makito Sato
  • Masashi Yanagisawa
چکیده

Circulating glucocorticoid levels oscillate with a robust circadian rhythm, yet the physiological relevance of this rhythmicity remains unclear. Here, we show that modulation of circadian glucocorticoid oscillation by enhancing its amplitude leads to anxiolytic-like behavior. We observed that mice with adrenal subcapsular cell hyperplasia (SCH), a common histological change in the adrenals, are less anxious than mice without SCH. This behavioral change was found to be dependent on the higher amplitude of glucocorticoid oscillation, although the total glucocorticoid secretion is not increased in these mice. Genetic and pharmacologic experiments demonstrated that intermediate opioid peptides secreted from SCH activate CXCR7, a β-arrestin-biased G-protein-coupled receptor (GPCR), to augment circadian oscillation of glucocorticoid levels in a paracrine manner. Furthermore, recapitulating this paracrine axis by subcutaneous administration of a synthetic CXCR7 ligand is sufficient to induce anxiolytic-like behavior. Adrenocortical β-arrestin-biased GPCR signaling is a potential target for modulating circadian glucocorticoid oscillation and emotional behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production.

Glucocorticoid (GC) is an adrenal steroid with diverse physiological effects. It undergoes a robust daily oscillation, which has been thought to be driven by the master circadian clock in the suprachiasmatic nucleus of the hypothalamus via the hypothalamus-pituitary-adrenal axis. However, we show that the adrenal gland has its own clock and that the peripheral clockwork is tightly linked to ste...

متن کامل

Glucocorticoid Rhythm Renders Female Mice More Daring

Glucocorticoids, which have been implied in mood modulation, display robust diurnal oscillations in the blood. But does their circadian rhythm regulate mood swings? Ikeda et al. now identify a paracrine signaling pathway in the adrenal cortex that potentiates the daily amplitude of plasma glucocorticoids and renders female mice braver.

متن کامل

Zinc signaling through glucocorticoid and glutamate signaling in stressful circumstances.

Humans and animals are constantly exposed to environmental stress. The hypothalamic-pituitary-adrenal (HPA) axis responds to stress, followed by glucocorticoid secretion from the adrenal glands. This response serves to maintain homeostasis in the living body through energy mobilization or to restore it. The brain is an important target for glucocorticoids. The hippocampus participates in the re...

متن کامل

The modulating effect of glucocorticoids and opioid system on anxiety related behavior in young and adult rats

One of the main components of the stress system is hypothalamus- pituitary-adrenal (HPA) axis. Acute activation of µ-opioid receptors increases the activity of the HPA axis, leading to release of ACTH and corticosterone. Glucocorticoids can change behaviors, depend on age but there were no evidences about the interaction between age, opioid system and glucocorticoids. In this experiment, ...

متن کامل

Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice.

Although numerous stress-related molecules have been implicated in vulnerability to psychiatric illness, especially major depression and anxiety disorders, the role of the brain mineralocorticoid receptor (MR) in stress, depression, and affective function is not well defined. MR is a steroid hormone receptor that detects circulating glucocorticoids with high affinity and has been primarily impl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 155  شماره 

صفحات  -

تاریخ انتشار 2013